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Limited-path-length entanglement percolation in quantum complex networks
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We study entanglement distribution in quantum complex networks where nodes are connected by bipartite
entangled states. These networks are characterized by a complex structure, which dramatically affects how
information is transmitted through them. For pure quantum state links, quantum networks exhibit a remarkable
feature absent in classical networks: it is possible to effectively rewire the network by performing local operations
on the nodes. We propose a family of such quantum operations that decrease the entanglement percolation
threshold of the network and increase the size of the giant connected component. We provide analytic results
for complex networks with an arbitrary (uncorrelated) degree distribution. These results are in good agreement
with numerical simulations, which also show enhancement in correlated and real-world networks. The proposed
quantum preprocessing strategies are not robust in the presence of noise. However, even when the links consist
of (noisy) mixed-state links, one can send quantum information through a connecting path with a fidelity that
decreases with the path length. In this noisy scenario, complex networks offer a clear advantage over regular
lattices, namely, the fact that two arbitrary nodes can be connected through a relatively small number of steps,
known as the small-world effect. We calculate the probability that two arbitrary nodes in the network can
successfully communicate with a fidelity above a given threshold. This amounts to working out the classical
problem of percolation with a limited path length. We find that this probability can be significant even for paths
limited to few connections and that the results for standard (unlimited) percolation are soon recovered if the
path length exceeds by a finite amount the average path length, which in complex networks generally scales
logarithmically with the size of the network.
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I. INTRODUCTION

Networks permeate all informational structures. They un-
derlie natural, social, and artificial systems where different par-
ties interact, describing the flow of information between them.
Differences in the characteristics of such interactions and how
they evolve give growth to different types of structures: regular
lattices, completely random networks, and, spanning the range
between these two, complex networks, which do not have a
regular structure but neither are completely random. Quantum
information is not an exception, and quantum networks [1]
where nodes communicate between them through quantum
channels are essential to quantum information processing
and distributed applications. One of the key tasks in these
networks is the transmission of quantum information between
two distant nodes of the network. This task depends not only
on the quality of the connections between nodes and on the
amount of resources, but also on the underlying structure of the
network. Therefore, understanding how structural properties
affect the functionality of the network will allow both the
design of better network architectures and the modification
of existing ones that make feasible communication at farther
distances, among a greater number of nodes or in the presence
of higher levels of noise.

Two distant nodes in a network may be connected by one
path of entangled states (Fig. 1). In this case, long-distance
entanglement between two nodes can be established with
a probability that decays exponentially with the distance
separating the nodes. This problem can be overcome by
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quantum repeaters, which create a distant entangled pair of
high fidelity [2]. However, this technique requires a number
of qubits in each node that scales logarithmically with the
distance [3]. More important, though, is that it only considers
a one-dimensional connection between the two nodes. These
two nodes, however, may be embedded in a more realistic,
higher dimensional network. In this case, a higher number
of paths may exist, which can help in the communication:
with the existence of clusters of nodes connected by entangled
states, two distant nodes will be able to establish entanglement
between them if they both belong to the same cluster [4].
Entanglement percolation, which makes use of such higher
dimensional networks, was first proposed in the honeycomb
lattice [5] and later extended to other regular lattices [6,7],
to schemes using multipartite entanglement [8] and to noisy
networks [9–12]. In Ref. [13], we studied entanglement
distribution in a wide class of complex networks with pure-
state connections. Complex networks arise in many real
scenarios, notably including the most important real-world
communication networks, and it is very plausible that they
will become relevant in quantum communication architectures
too. They offer very rich properties and phenomena. Inter-
esting quantities can be computed requiring only statistical
properties. This might seem a limitation but it can represent an
advantage: it makes mathematically tractable some problems
that are hard or impossible to solve on lattices and provides a
minimal description in scenarios where complete knowledge
of the system is not available or is hard to obtain.

One of the primary features of networks is the presence,
or absence, of a cluster of nodes connected between them (a
connected component, in graph theory language) whose size is
of the order of the size of the network. Such a cluster is called
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FIG. 1. (Color online) A quantum network. Nodes are large
(green) circles. Links between nodes are represented by (gray) bars,
each holding a number of bipartite entangled states [narrow (black)
lines] shared between nodes.

the giant connected component (GCC), and in the asymptotic
limit of infinite-size networks it is defined as the cluster
spanning a finite fraction S of nodes of the network. This
concept is very closely related to that of a percolating cluster. In
bond percolation, for example, edges are occupied with some
probability φ1, thus connecting their end vertices, and vacant
with probability 1 − φ1, disconnecting them. Then there exists
a percolation threshold φ∗

1 in this occupation probability:
below the threshold, all components are of finite size, while
above it there exists one giant connected component whose size
is comparable to the network size. This threshold is the critical
point of a phase transition, generally of second order, and can
be manifested by the divergence of the average component
size, which acts like a susceptibility in a magnetic material.

The percolation threshold and the size of the giant con-
nected component, as well as many other properties, strongly
depend on the basic structure of the network [14–16] as well
as on degree-degree correlations [17,18] and clustering [19].
Therefore, a change in the structure of a network can affect
its ability to communicate information. For example, the
scale-free topology of the Internet makes it strong—resilient—
against the failure of random nodes [20], but not against
target attacks directed to its major hubs (nodes with the
highest number of neighbors) [21,22]. This relation between
the structure of the network and the communication over it can
also be exploited to benefit the earlier appearance of the giant
cluster and to find architectures that allow communication even
in the presence of noise.

In this paper we study the distribution of quantum in-
formation over quantum complex networks. We first focus
on networks where nodes are connected by bipartite pure
entangled states. We propose a transformation of the network
that, using only local knowledge, can change the structure of
the network and decrease its percolation threshold. We also

calculate how the percolation threshold and the size of the
giant component change after the transformation. Then we
turn to mixed-state connections between nodes and show that
the small-world behavior of many complex networks allows
quantum communication above some fidelity bound for finite,
but very large, quantum complex networks.

II. RANDOM GRAPHS

A network is naturally represented by a graph G, which is
an ordered pair of sets G = {V,E}. V is the set of vertices
(or nodes or points), and E the set of edges (or links or lines),
which are pairs of elements of V and represent the connections
between them. In this paper we always consider undirected
graphs with neither multiple edges (i.e., either zero or one edge
between every pair of vertices) nor self-loops. The degree of a
vertex, k, is the number of edges emerging from it. A connected
component, or cluster, is a subgraph where any two vertices
are connected by at least one path of edges and to which no
more vertices can be added without losing this property.

Random graphs [23] are ensembles of graphs G of the same
size, with a probability P (G) assigned to every graph G in the
ensemble. For any property O(G) of a graph we can calculate
its average over the ensemble,

〈O〉G =
∑
G∈G

O(G)P (G). (1)

However, in most real scenarios, but also in many theoretical
models, only a single, large graph is studied. Such graphs are
said to be self-averaging if the property we are studying is
well characterized by its mean. This happens when the graph
is large enough to make fluctuations around the average vanish.
For a more detailed discussion about self-averaging, see, for
example, Ref. [24] for random graphs and Ref. [25] for the
World Wide Web network. We consider this assumption in the
following and check its validity numerically in the examples
we consider.

One of the basic properties of a graph is the distribution
of the probability pk that a vertex has degree k. There is
also a related distribution that will come in handy later and
is that of the excess degree: the number of edges k emerging
from a vertex reached through another edge and excluding it.
This probability can be found easily by considering first the
degree of a vertex reached through an edge. Since vertices
with a higher degree are easier to reach, this probability is
proportional to the degree of the vertex reached, kpk/〈k〉. The
excess degree probability rk is therefore

rk = (k + 1)pk+1

〈k〉 . (2)

Generating functions [26] are a mathematical tool that is
very useful when studying properties of graphs described by
probability distributions [15]. Among other useful properties,
they allow for a straightforward convolution of distributions.
Let us introduce them using the degree distribution. The
function gp(x) that generates the distribution {pk} is the power
series of x with coefficients equal to the probabilities in the
distribution:

gp(x) =
∑
k�0

pkx
k. (3)
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Note that each probability pk can be recovered from its
generating function (3) by taking the kth derivative of gp(x) at
x = 0:

pk = 1

k!

dkgp(x)

dxk

∣∣∣∣
x=0

. (4)

Since the probability distribution is normalized,
∑

k pk = 1,
so is its generating function, gp(1) = 1. It is also convergent
for |x| � 1, which is all what we will use here.

The first moment of the distribution pk , which corresponds
to the average degree of the graph 〈k〉, is equal to the first
derivative at x = 1:

〈k〉 = g′
p(1) =

∑
k�1

kpk. (5)

This allows us to express the generating function for the excess
degree distribution, gr (x), in terms of (3):

gr (x) =
∑
k�0

rkx
k = g′

p(x)

g′
p(1)

. (6)

Higher moments can be similarly found by taking more
derivatives. In general, the nth moment is

〈kn〉 =
∑
k�0

knpk =
[(

x
d

dx

)n

gp(x)

]
x=1

. (7)

Convolution of independent distributions can be obtained
by multiplication of their respective generating functions.
For example, the total number of edges emerging from n

independent vertices (the sum of their degrees) is generated
by [gp(x)]n.

III. NETWORK EXAMPLES

In this paper we calculate properties such as the average
component size, the giant connected component size, and
the percolation threshold. Analytical results are found for
random networks with uncorrelated degree distributions and
for the Watts-Strogatz small-world model in the mixed-state
scenario. We also discuss several network topologies as
concrete examples of our results: the simple Bethe lattice,
two networks (Erdős-Rényi and scale free) belonging to the
configuration model, the Watts-Strogatz small-world model,
and two real-world networks. All of them share a common
property known as the “small-world effect”: the average path
length, or intervertex distance, scales logarithmically with the
size of the network, rather than as a positive power of the size,
N1/d , as is the case in finite-dimensional networks. Here we
present a short description of each of these network models.

Let us start with the simplest network example. The Bethe
lattice is not a random graph but has some similar properties
such as a local tree-like structure and the small-world effect
(as long as the degree of its vertices exceeds 2), while at
the same time, it remains amenable to analytical study. A
Bethe lattice with coordination number k is defined as an
infinite regular graph where every vertex has the same degree
k and is topologically equivalent to all the others, as shown in
Fig. 2. Random regular graphs—graphs where all vertices have
a fixed degree but edges are placed randomly—asymptotically

FIG. 2. (Color online) Example of the first five crowns of a Bethe
lattice with coordination number k = 3. Left: Bethe lattice before
q-swap. Right: Same network after applying a 3-swap.

approach Bethe lattices, making them a relevant model where
analytical treatment is usually possible.

Erdős-Rényi graphs [27–29] are maximally random graphs
with the only constraint 〈k〉 = z. An Erdős-Rényi network
with N vertices can be realized by randomly placing M =
Nz/2 edges or, similarly, by placing an edge between every
pair of vertices with probability z/N (also known as the
Gilbert model), which is asymptotically equivalent [16].
Figure 3 shows an example of a small Erdős-Rényi network.
Their degree distribution is Poissonian, pk = e−zzk/k!, with
generating functions gp(x) = gr (x) = exp[z(x − 1)].

Real-world networks are not Poissonian but typically
exhibit a power-law (scale-free) degree distribution, pk ∼ k−τ ,
characterized by a relatively important number of nodes with
a degree much greater than the average. Scale-free networks
with τ � 3 have a percolation threshold at φ1 = 0, while for
networks with τ > 3 a finite threshold appears. However, in
heavy-tailed networks such as these, a cutoff in the degree
naturally appears in scenarios where high degrees cannot exist
due to, for example, targeted attacks, physical constraints,
saturation effects, or finite-size networks. For this reason
we consider scale-free networks with an exponential cutoff,
pk = Ck−τ e−k/κ (C is a normalizing constant), while the pure
scale-free behavior can still be recovered by taking the limit
κ → ∞. The cutoff κ strongly affects the network properties,
and in particular, networks with τ � 3 now have a finite
threshold.

Random graphs with uncorrelated degree distributions
such as the previous models exhibit a very low level of
clustering (also known as transitivity): the likelihood that

FIG. 3. (Color online) Left: Example of an Erdős-Rényi network
with N = 30 and z = 4/3. Right: Example of a Watts-Strogatz
network with N = 30 and β = 0.2.
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MARTÍ CUQUET AND JOHN CALSAMIGLIA PHYSICAL REVIEW A 83, 032319 (2011)

two neighbors of the same vertex are also neighbors between
them. Aside from regular lattices, which have a high level
of clustering, there are also many real-world networks with
this property. This is especially true for social networks, but
also for communication and biological networks. To study this
behavior, many models have been proposed, maybe the most
studied being the Watts-Strogatz model [30]. This model is
a random graph with an ordered local structure and a high
level of clustering but still with a surprisingly low average
path length (see Fig. 3). Here we study a slight modification,
also considered in [14]. It is generated by placing N vertices
in a one-dimensional ring. Then N additional random edges,
called “shortcuts,” are added with probability β, thus giving
an average of βN shortcuts.

We also study two real-world networks. The first case
represents a real-world scale-free network consisting of World
Wide Web sites in the nd.edu domain [31]. In this case we
introduce an artificial cutoff by neglecting nodes with degree
k � 15, leaving a graph with 142 192 nodes and 170 352 edges.
The second real-world example is the OpenPGP Web of Trust,
a social network representing the trust between OpenPGP
users. Without going into much detail, OpenPGP is a standard
encryption protocol for securing e-mail communications using
public key cryptography. If Alice wants to send a secure
message to Bob, she has to use Bob’s public key to encrypt it.
The authentication problem arises when Alice cannot verify
whether the key she is using is really owned by Bob. A solution
to this problem is the Web of Trust, in which every user
signs a public key if she trusts it, thus generating a directed
graph. To trust a key, usually a user has to meet with the key
owner and check that he is really who he claims to be. This
social model is thus relevant to quantum communication in the
sense that at this point the two users could create a bipartite
entangled state and then separate, each keeping one of the
parts. By repeatedly doing so between different pairs of users,
as in the Web of Trust, a quantum network would be created.
Here we use the strongly connected component of the Web of
Trust obtained from the Swiss keyserver1 as of May 25, 2010,
containing 41 459 keys and 424 577 signatures. We considered
only bidirectional edges, corresponding to users who mutually
signed their keys. This leaves an undirected graph with 38 550
keys and 145 388 two-way signatures.

IV. PURE-STATE NETWORKS

We first focus on networks of pure, nonmaximally en-
tangled states, as in [5]. In this case, edges have some
probability φn of being converted into maximally entangled
states, depending on the amount of entanglement and the
number n of bipartite states per edge. Singlets can then be
used for perfect teleportation; that is, they are equivalent
to a single-use ideal quantum channel. This strategy can be
directly mapped into a bond percolation problem and is thus
called classical entanglement percolation. There exists, then, a
critical probability φ∗

1 , called the percolation threshold, above
which the giant component appears with fractional size S > 0.

1[wwwkeys.ch.pgp.net:11371/pks/]; public data available at
[www.lysator.liu.se/∼jc/wotsap/index.html].

Above this threshold, any two nodes are able to share maximal
entanglement if they both belong to the giant component. This
happens with a probability S2, which is independent of the
distance but strongly depends on the network topology. Hence,
for a given type of edge φn long-distance entanglement will
only be possible for networks fulfilling φn > φ∗

1 . Remarkably,
due to the quantum nature of the connections, it is possible
to drastically change the network topology by local actions: a
particular measurement is done on qubits within the same
node, establishing new connections between neighboring
nodes. Thus, a quantum preprocessing of the network can
be carried before edges are converted into singlets, so the new
structure provides, for example, a better percolation threshold.
Moreover, to carry the particular preprocessing strategies, we
consider that it is unnecessary to know the precise structure
of the network. Given only general statistical properties of
the network, we propose strategies that act on each node,
depending only on locally accessible information, such as the
degree of the node. We calculate the new percolation threshold
φ̃∗

1 of the modified network and the evolution of the giant
connected component S̃. Above the threshold any two nodes
will be able to establish an entangled state with probability
S̃2, again, independently of the distance between them. Thus,
quantum preprocessing can benefit communication in two
ways: by lowering the percolation threshold and by an increase
in the giant component size.

A. Network model

We consider a quantum network in which neighboring
nodes share n = 2 copies of a bipartite pure entangled state of
two qubits,

|ψ〉 =
√

λ0|00〉 +
√

λ1|11〉, (8)

where
√

λ0 �
√

λ1 � 0 are its Schmidt coefficients. A par-
tially entangled state can be converted into a maximally
entangled state (singlet for short) with singlet conversion
probability (SCP), which depends only on its largest Schmidt
coefficient [32]. For the state |ψ〉, the SCP is

φ1 = min[1,2(1 − λ0)]. (9)

We consider edges that are of the form |ψ〉⊗2 and, thus, can
be converted to singlets with the SCP

φ2 = min
[
1,2

(
1 − λ2

0

)]
. (10)

With this probability two neighbors can establish a perfect
channel between them. As discussed above, for two distant
nodes this probability depends on the structure of the network
that connects them.

B. Modifying the network: q-swap

In [13] we introduced a network transformation, the q-
swap, that requires only local information of the network:
the degree of a target node and the status of its neighbors.
The q-swap is built on a basic transformation: entanglement
swapping or swap [33]. In a subgraph with three nodes, the
party at the target node c performs a Bell measurement on
two qubits, each of them belonging to states |ψ〉 shared with
different nodes, a and b (see Fig. 4). After this operation,
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FIG. 4. (Color online) (a) Entanglement swapping and (b) q-swap
(b). Small filled (black) circles represent qubits; large (green) circles,
nodes; solid lines, states |ψ〉; and dashed lines, the resulting mixed
state after entanglement swapping, with the same SCP as |ψ〉.

the central qubits become disentangled from a and b, but in
return a mixed entangled state with the same SCP as |ψ〉 is
created between a and b [5]. Note that this operation cannot be
repeated with a fourth node because the newborn state shared
between a and b is not of the form of |ψ〉. The q-swap performs
swap transformations between successive pairs of neighbors
of a central target node of degree q, thus changing an initial
q-star with edges |ψ〉⊗2 to a q-cycle with newborn edges,
while the central target node becomes disconnected from the
network (see Fig. 4). For a given network topology, we will
see that performing q-swaps on nodes with certain degrees
improves the threshold. It is worth noting, however, that in
some instances the application of particular q-swaps may be
counterproductive.

C. Percolation threshold and giant component

The main two figures of merit that we use to compare the
two strategies are the percolation thresholds (φ∗

1 and φ̃∗
1 for

the classic and q-swap strategies, respectively) and the size
of the giant components (S and S̃). Since q-swaps disconnect
vertices, which can be chosen not to be the two corresponding
to the parties that want to communicate, the probability of
connecting two remote nodes is in fact Ŝ2, where Ŝ = S̃S1/S̃1

and S1 is the value of S at φ1 = 1. The percolation threshold
tells us which is the minimum amount of entanglement needed
for long-distance communication, while the square of the giant
connected component size is the probability that any two nodes
can communicate.

To compute these two values we use the generating
function formalism described in Sec. II. The key probability
distributions are those of finding a connected component of
finite size s, either when a random vertex is chosen, Ps , or
when a random edge is followed to one of its ends, Rs . A
random edge is vacant with probability R0 = 1 − φ2, giving a
cluster of size 0. When it is occupied, then a node of degree

k + 1 is reached with probability rk , giving access to k clusters.
Therefore,

Rs�1 = φ2

∞∑
k=0

rk

∑
s1,s2,...,sk

Rs1Rs2 · · · Rsk
δs,1+∑k

i=1 sk
. (11)

We have assumed that components are treelike, that is,
that they do not have finite loops. This is indeed true for
finite components, since an edge exiting such a component
will reconnect back to itself with a probability proportional
to s/N → 0. The function generating Rs is then hR(x) =∑

s�0 Rsx
s , which gives the recurrence relation

hR(x) = 1 − φ2 + φ2xgr [hR(x)]. (12)

It is crucial to note here that by restricting to finite s, we have
explicitly excluded the infinite giant component from hR(x).
Thanks to this, the previous treelike assumption holds.

We can proceed similarly with Ps . A random vertex has
degree k with probability pk , giving access to k clusters. The
probability that this random vertex is in a component of size s

is then

Ps =
∞∑

s=1

pk

∑
s1,s2,...,sk

Rs1Rs2 . . . Rsk
δs,1+∑k

i=1 sk
. (13)

Now the generating function for Ps is related to hR(x):

hP (x) = xgp[hR(x)]. (14)

Knowledge of hP (x) and hR(x) allows for the derivation
of φ∗

1 and S. The probability u that an edge connects to a
finite component is the smallest real solution of u ≡ hR(1) in
Eq. (12), which is, in general, a transcendental function. In
fact, the percolation threshold is the value of φ1 at which a
solution u < 1 appears. Moreover, u2 is the probability that
the edge connects to a finite component through both ends, so
with probability 1 − u2, a random edge belongs to the giant
component (which is 0 below the threshold).

Similarly, the main quantity of interest, the giant component
size, can be computed as the missing component in the whole
network. The sum of all Ps , hP (1), gives the probability
that a random vertex belongs to a finite component, while
the probability S that it is in the giant component is S =
1 − ∑

s�1 Ps = 1 − hP (1). Again, this equation is usually
transcendental and has to be solved numerically. For instance,
the Erdős-Rényi model, with gp(x) = gr (x) = ez(x−1), has a
giant component fraction S = 1 − e−zφ2S [15]. In this case the
solution can be expressed in terms of the Lambert W function,

S = 1 + 1

zφ2
W (−zφ2e

−zφ2 ), (15)

and the phase transition to S > 0 occurs at the well-known
point φ∗

1 = 1/z. In contrast, first moments can usually be
computed even when a closed expression for hP (x) and hR(x)
is not known. As a relevant example, the average component
size 〈s〉 = h′

P (1) is an important property of the network
that provides an alternative way of finding the probability
threshold: it is at this point that 〈s〉 diverges. From the
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FIG. 5. (Color online) Example of the branching process before
and after a 3-swap, starting at the leftmost node. (a) Before any
operation the branching process arrives at a node of degree 3, leading
to two components (in dark gray). (b) After the 3-swap, the branching
process is already in a 3-cycle, each of its nodes belonging to one of
the two components.

derivatives of Eqs. (12) and (14), it is immediate to find that
this divergence can be traced back to that of

h′
R(1) = φ2

1 − φ2g′
r (1)

. (16)

This brings the general result for the critical SCP φ∗
2 = 1/g′

r (1)
[34].

We now want to understand how the q-swap transformation
changes the percolation properties of the network. Every
particular q-swap can be implemented (or not) with probability
�q (or 1 − �q) on nodes of degree q. Giving the values for
each �q specifies the quantum strategy. q-swaps introduce
cycles, so components are no longer treelike and generating
functions cannot be directly used. Note, however, that, since
newborn edges cannot be reused, those cycles do not overlap
between each other and can thus be treated as blocks of a
treelike component by considering two steps in the branching
process. We first compute the generating function for the
probability Rs after q-swaps are done, h̃R(x). Now, instead
of arriving at a vertex of degree q connecting to other q − 1
components, after a q-swap operation has been done we arrive
at a cycle of q nodes (including the one we are coming from)
connected via edges occupied with probability φ1 (see Fig. 5).
When edges are converted into singlets, the accessible nodes
of this new q-cycle form a string of length l with probability

⎧⎪⎨
⎪⎩

φ
q

1 for l = q,

qφ
q−1
1 (1 − φ1) for l = q − 1,

(l + 1)φl
1(1 − φ1)2 for l � q − 2.

For l � q − 2, l new components emerge, with the total size
(including all the vertices in the cycle, except the starting
one) probability generated by {xgr [h̃R(x)]}l . For l = q − 1
and l = q, q − 1 components emerge, again with the total size
probability generated by {xgr [h̃R(x)]}q−1. The total size of
this cycle and its emerging components is then generated by

Cq(x) =
q−2∑
l=0

(l + 1)φl
1(1 − φ1)2{xgr [h̃R(x)]}l

+ [
qφ

q−1
1 (1 − φ1) + φ

q

1

]{xgr [h̃R(x)]}q−1. (17)

Therefore, the new h̃R(x) is of the same form as Eq. (12) plus
a term h̃R,q(x) for each q-swap:

h̃R(x) = 1 − φ2 + φ2xgr (h̃R(x)) +
∑
q�2

�qh̃R,q(x),

(18)
h̃R,q(x) = rq−1{(φ2 − 1) − φ2x[h̃R(x)]q−1 + Cq(x)}.

At this stage we can already calculate φ̃∗
1 as the smallest value

of φ1 for which there exists a positive solution ũ = h̃R(1) < 1
to (18) at x = 1. It is easy to convince oneself that each separate
contribution h̃R,q(1) either increases or lowers the percolation
threshold, and therefore for the optimal strategy each �q is
either 0 or 1.

For the new h̃P (x) we need to consider that not all nodes of
degree q are suitable targets of q-swaps, since they cannot
be performed on adjacent nodes. Therefore, given a node
of degree q there is a probability ηq that a q-swap can be
performed on it. If the q-swap is performed on a node, then it
changes its degree from q to 0, and hence

h̃P (x) = xgp[h̃R(x)] + x
∑
q�2

�qηqpq{1 − [h̃R(x)]q}. (19)

By using the solution ũ = h̃R(1) here, we can obtain the size
of the giant connected component, S̃ = 1 − h̃P (1). This gives
the probability Ŝ2 that two distant nodes are connected by a
path of singlets.

The probability ηq depends on which degrees are targets
of q-swaps and on how the network is traversed to operate on
the nodes. To compute its value we need to consider maximal
clusters consisting of nodes where all vertices are of any target
degree q—the border of such clusters is necessarily made
of nodes of degree different from q, and hence operations
can be done independently on every cluster. As an example,
let us discuss the simplest case of only performing 2-swaps.
Starting from a random vertex of degree 2, we find a cluster of
vertices of same degree 2 whose size is s with probability s(1 −
r1)2rs−1

1 . By acting on a node, and then on every second node,
there are two possible values for the number of operations
done in each cluster, �s/2 and �s/2� (Fig. 6), which coincide
for s even. This gives a maximum and minimum value for η2:

η
(max)
2 =

∑
s�1

s(1 − r1)2rs−1
1

�s/2
s

= 1

1 + r1
, (20)

FIG. 6. (Color online) Two clusters of five nodes with degree 2.
Nodes are large circles: white if their degree is different from 2, dark
gray (red) if they are operated on, and light gray (green) if they are
not. Top: Operations are done at nodes 1, 3, and 5, leading to η

(max)
2 .

Bottom: Operations are done at nodes 2 and 4, leading to η
(min)
2 .
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η
(min)
2 = (1 − r1)2 +

∑
s�2

s(1 − r1)2rs−1
1

�s/2�
s

= 1 − (1 − r1)r2
1

1 + r1
. (21)

Note that for clusters of size s = 1, an operation is always
done. When operations are performed starting from a random
vertex in each cluster of vertices with degree 2, one needs to
take into account the number of vertices s and t at odd and
even (including 0) distance from the first vertex: operations
will be performed on a fraction t/(t + s) of the cluster. The
probability ξ (s,t) of starting in a vertex of degree 2 such that
it has s neighbors of degree 2 at odd distance and t at even
distance is

ξ (s,t) =
(

2

1 + s − t

)
(1 − r1)2rs+t−1

1 t (22)

if |s − t | � 1 and 0 otherwise. For general q, this probability
can be found by generating functions similar to the ones
described before; see the Appendix for more details. Given
the probability ξ (s,t), then the value for η2 when operations
are started at each cluster of target vertices is

η
(rand)
2 =

∑
s,t

t

t + s
ξ (s,t) = r1 + (1 − r1)2 atanh(r1)

2r1
. (23)

Figure 7 show η
(max)
2 , η

(min)
2 , and η

(rand)
2 together with

numerical simulations performing 2-swaps by traversing the
graph with a breadth first search (BFS), as described in the
following section. The numerical values for η2 are close to
the maximum value because it is much more likely that the
traversal of graph started outside most of the degree 2 clusters
(e.g., arriving through one of the white nodes in Fig. 6), thus
performing the maximum number of operations in them.

0.0 0.1 0.2 0.3 0.4
r1

0.7

0.8

0.9

1.0
η2

FIG. 7. (Color online) Probability η2 of performing a 2-swap,
given a vertex of degree 2. Upper and lower lines correspond to
Eqs. (20) and (21), respectively; squares, to Erdős-Rényi network
simulations; and circles, to scale-free network simulations. All
simulations were performed with N = 106 and breadth first search
traversal of the graph.

D. Network examples and simulations

Here we present some examples of entanglement percola-
tion in the networks described in Sec. III, and we provide
analytic solutions for paradigmatic cases. To check these
results and extend them to correlated and real-world networks,
we have performed computer simulations with various network
models. Graphs with uncorrelated degree distribution are
relatively easy to generate [15]. First, a set of N numbers
{ki} randomly chosen to follow the desired degree distribution
is generated, so each vertex i has ki stubs or “half-edges”
associated with it. If the sum

∑
i ki is odd, a new set is

generated until an even sum is obtained, so all stubs can be
joined. Then pairs of stubs are selected randomly and joined
to form edges until there are no stubs left. In our simulations
we did not allow self-loops or multiple edges. The quantum
preprocessing is done by traversing all the graph with a BFS,
which starts at a random root vertex and explores all the
neighboring nodes at distance 1, 2, . . . , until all the vertices in
the component have been visited. After that, another BFS is
done starting from a random unexplored vertex in another
component, until all components have been examined. At
each discovered vertex, the local structure is changed from
a q-star to a q-cycle if the vertex degree is one of the target
degrees and if none of the edges in the star have already been
used.

For the Bethe lattice with coordination number q, gp(x) =
xq and gr (x) = xq−1. In this network the phase transition
occurs at φ2 = (q − 1)−1 and

(q − 1)−1 = (1 − φ1)−1
{
2φ1 + φ

q

1 [φ1(q − 1) − (q + 1)]
}

after q-swap is applied. Therefore, q-swap always gives a
better threshold except for the special case q = 2 of an
infinite one-dimensional chain, where the probability decays
exponentially with the distance.

In the Erdős-Rényi network, before any transformation the
threshold is given by φ2 = 1/z. After, for example, the 2-swap
and 3-swap operations, the thresholds are, respectively,

1

z
= φ2 + e−z

[ − φ2 + z
(
2φ1 − φ2

1

)]
(24)

and

1

z
= φ2 + ze−z

[ − φ2 + z
(
1 + φ1 − φ2

1

)]
. (25)

2 3 4 5 6 z

0.2

0.1

0.0

γ

0.0 0.2 0.4 0.6 0.8 1.0
φ1

0.2

0.6

1.0
S

FIG. 8. (Color online) Erdős-Rényi network. (a) Gain γ as a
function of the mean degree z after 2-swap (dotted line), 2,3-swap
(dashed line), 2,3,4-swap (dot-dashed line), and optimal q-swaps
(solid line). (b) Normalized size Ŝ of the the giant connected
component (GCC) as a function of φ1 for z = 2.5, before (squares)
and after (circles) 2,3-swap; N = 106.
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FIG. 9. (Color online) Scale-free network, τ = 1. (a) Gain γ as a
function of the cutoff k after 2-swap (dotted line), 2,3-swap (dashed
line), 2,3,4-swap (dot-dashed line), and optimal q-swaps (solid line).
(b) Normalized size Ŝ of the GCC as a function of φ1 for κ = 4,
before (squares) and after (circles) 2,3-swap; N = 106.

Figure 8 shows the evolution of the giant connected component
before and after the transformations, with perfect agreement
between analytical and numerical results. Figure 8 also shows
the gain γ = (φ̃∗

1 − φ∗
1 )/φ∗

1 in the percolation threshold, which
in some situations is higher than 20%. The performance of
different q-swaps depends on the mean degree z, usually
improving the threshold for those operations which act on
nodes whose degree is around z. Figure 9 shows similar results
for the giant connected component evolution and the gain in
scale-free networks with τ = 1. In this case the gain can be
about 25%.

For the Watts-Strogatz model, which is correlated, and
the World Wide Web network, the above approach is not
valid because the treelike assumption does not hold. How-
ever, numerical simulations show that q-swaps can also
provide an improvement in the percolation threshold, φ̃∗

1 < φ∗
1 .

Figure 10 shows the threshold probability for the Watts-
Strogatz before and after 2-swap and the size of the giant
connected component. Figure 11 shows the size of the giant
connected component for the World Wide Web.

Note that, in general, it may be counterproductive to
perform q-swaps. In Figs. 10 and 11 we see that for some
values of φ1 the giant connected component fraction S without
preprocessing is larger than Ŝ. This often happens around
φ1 = 2 − √

2. This is precisely the point where the edges in
the unmodified network can be directly converted into singlets
with φ2 = 1, that is, all connections become ideal channels and
S attains its maximal value S = S1. Obviously at this stage any
preprocessing cannot further increase the size of the connected
component, and it will most likely decrease it.

0.01 0.05 0.1 0.5 1
β

0.2

0.4

0.6
φc

0.0 0.2 0.4 0.6 0.8 1.0
φ1

0.2

0.6

1.0
S

FIG. 10. (Color online) Watts-Strogatz network. (a) Percolation
threshold φ∗

1 as a function of shortcut probability β before (squares)
and after (circles) 2-swap. The solid line is the analytic result from
Ref. [14]. (b) Normalized size Ŝ of the GCC as a function of φ1 for
β = 0.2, before (squares) and after (circles) 2-swap; N = 106.
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FIG. 11. (Color online) World Wide Web network [31], with a
cutoff at k = 15, before (squares) and after (circles) 2,3-swap.

V. MIXED-STATE NETWORKS

A network with nodes connected by pure states is an
abstraction that gives insight into the possibilities of long-
distance entanglement in complex networks, enabling perfect
teleportation between distant parties when at least a path of
maximally entangled states is created. In general, however,
states connecting two neighbors are noisy and need to be
described by mixed states. In this situation, the optimal fidelity
of teleportation f is directly related to the maximal singlet
fraction F [35] by

f = Fd + 1

d + 1
, (26)

where d is the dimension of each part of the bipartite state
and F is defined as the maximal overlap of a state ρ with a
maximally entangled state |〉 = 1√

d

∑
i |ii〉:

F (ρ) = max
|〉

〈|ρ|〉. (27)

Entanglement percolation in the mixed-state scenario has
already been addressed in regular lattices with connections
consisting of singlets that have suffered an amplitude damping
[9,10]. There, a hybrid swapping strategy is proposed for
this type of connections, which could also be used to build
a mixed-state q-swap to act on complex networks with at least
four states per edge. In another approach, Perseguers gives
a fidelity threshold for the links above which long-distance
quantum communication in the presence of noise is possible
for an infinite cubic lattice [8].

Communication in noisy networks can be considered from
another perspective. The noise in the connections fixes a
limit l in the maximum number of nodes through which the
information can be repeated before it becomes too corrupted
[3]. In this limited-path-length scenario, the total number of
vertices that a given node can communicate to also depends
strongly on the structure of the communication network
(Fig. 12). This is related to the average path length lav: the
length of the shortest path averaged over all possible pairs of
nodes. All nodes within this distance constitute a significant
fraction of the network. Therefore, for a path-length limit l

above the average lav, communication will be possible among
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FIG. 12. (Color online) For a limited path length, cluster growth
depends on the network topology. Here, clusters of limited path length
l = 1, 2, 3, and 4 in the OpenPGP Web of Trust, with sizes of 11, 37,
115, and 286.

an important number of nodes. Since the limiting l is finite,
the giant connected component appears only in models where
lav is also finite. In general, this only happens if the network
size is finite too. The question, then, is whether a small l will
suffice to cover a significant fraction of the network. In finite
d-dimensional networks, the average path length scales as
lav ∼ N1/d . However, the average path length of many complex
networks scales logarithmically with the size of the network.
This property is known as the small-world effect and appears
also in many real-world communication networks such as the
Internet. In this case, to access a significant fraction of nodes,
only a small number of edges need to be traversed. Small-world
models are therefore the first candidates where losses by noise
can be balanced by a short path length.

The problem of limited-path percolation was also addressed
in a different approach by López et al. [36]. In their model, they
calculate the percolation phase transition under the assumption
that communication is only effective if the new minimum
path length between two nodes does not exceed a multiple
of the original path length between them. Thus, in their study
the limitation in the path length comes from the topology of
the network and not from the nature of channels connecting
nodes, which fixes a constant limit of nodes through which the
information can be repeated.

Here, we are interested in the number of nodes that can
exchange quantum information with a given node for some
fixed minimum fidelity or, similarly, with what probability
two random nodes can reliably communicate between them.
We consider a scenario similar to that in the previous
sections, but replacing pure-state connections with generic
entangled mixed states. Here, no quantum preprocessing is
possible. However, we will find that the complex network
structure (in particular, the small-world effect) allows us to

interconnect a large number of nodes using the standard
entanglement percolation strategy. We start by doing some
numerical simulations and then derive the generating functions
for limited-path percolation and compute the limited average
size in noncorrelated networks and the Watts-Strogatz model.

A. Network simulations

We begin by simulating different models of networks. For
simplicity we consider that edges hold a single copy of a
two-qubit state ρF with maximum singlet fidelity F > 1/2, so
that the classical limit of f = 2/3 in the teleportation fidelity
can be exceeded. Note that, as long as ρF is entangled, this
limit can be achieved even if F < 1/2 by locally increasing the
singlet fidelity through trace-preserving local operations and
classical communication (LOCC) [37]. By applying random
bilateral rotations, ρF can be brought into a Werner state,

ρF = F |−〉〈−| + 1 − F

3
|+〉〈+|

+ 1 − F

3
|�−〉〈�−| + 1 − F

3
|�+〉〈�+|, (28)

which has the same singlet fidelity F . This state can also be
written as

ρα = α|−〉〈−| + (1 − α)
1

4
, (29)

with α = (4F − 1)/3. It can be interpreted as the result of
transmitting a pure singlet through a depolarizing channel.
Hence, when a state is teleported through l of such edges
[2,3,38], its fidelity is 1 with probability αl and 1/2 otherwise,
so its final fidelity is fl = (1 + αl)/2. This fidelity decreases
exponentially with the distance l and makes sucha communica-
tion scheme useless in networks such as linear chains or regular
lattices, where the typical distance between two nodes scales
as the size of the network. However, as we have discussed,
the typical distance in many complex networks scales only
logarithmically. The maximum distance l that information can
travel is fixed by the minimum fidelity fmin required at the end
point and by the purity α of the channels:

l =
⌊

ln(2fmin − 1)

ln α

⌋
. (30)

This means that, even if there exists a path between a sender
and a receiver in a network, it will only be useful if the length
of this path is below a certain threshold.

We performed extensive simulations of networks where
neighboring nodes share a state, (29), and considered the
classical limit as the minimum required fidelity, fmin = 2/3.
For small networks (N <∼ 104) we performed the calculations
over several network realizations and then averaged the results.
For bigger networks, a single network realization is usually
enough due to the self-averaging. The l-limited average cluster
size 〈sl〉 is an especially relevant parameter, which amounts to
the probability that two nodes can communicate with fidelity
f > fmin.

We have thus calculated 〈sl〉 for different network models
and sizes. In Fig. 13 we plot the normalized size 〈sl〉/N
as a function of l − lav for the Erdős-Rényi model, with
average path length lav ∼ ln N/ ln z [39]. For different network
sizes the curves collapse, supporting a linear N dependence
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FIG. 13. (Color online) Normalized l-limited average component
size 〈sl〉/N as a function of l − lav for the Erdős-Rényi network with
k = 2 and network sizes N = 103, 104, 105, and 106 (squares, circles,
diamonds, and triangles). Superimposed filled (orange) symbols
show the shape of the path-length distribution normalized by the
total number of possible vertex pairs, n̂(l) = 2n(l)/N (N − 1). Solid
(black) line is Eq. (34); horizontal dashed line is the square of the
GCC at φ1 = 1 [see Eq. (15)].

〈sl〉 ∼ N for fixed l. Similar results have recently been found
for the average number of nodes at an exact distance l from
a random central node [40]. Regarding the dependence in l,
our results show that the average size grows exponentially
with l for l � lav but deviate from this behavior when l is
close to the average path length, saturating to the maximum
component size shortly after lav. This deviation is due to the
depletion of nodes at distance l > lav. In Fig. 13 we also plot
the path-length distribution, that is, the number of pairs n(l)
separated by a distance l, normalized by the total number of
pairs N (N − 1)/2. Again, both curves, N = 103 and N = 104,
collapse, thus supporting a dependence n(l) ∼ N2. We also
found similar results for the scale-free and the Watts-Strogatz
models. It is interesting to note that, while lav grows with the
size of the network, the width of the path-length distribution
remains constant. Thus, for large networks a small increase in
α near lav leads to an abrupt change in 〈sl/N〉. This is in stark

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0
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FIG. 14. (Color online) Normalized l-limited average component
size 〈sl〉/N as a function of (l − lav)N−1/2 for the honeycomb two-
dimensional network with network sizes N = 1014, 5046, and 10 086
(squares, circles, and diamonds, respectively). Superimposed filled
(orange) symbols show the normalized histogram of the path-length
distribution.
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FIG. 15. Normalized l-limited average component size 〈sl〉/N as
a function of singlet fidelity F in the biggest component OpenPGP
Web of Trust (squares) and a honeycomb two-dimensional lattice
(crosses); N ∼ 3 × 104.

contrast to regular lattices, where both the mean and the width
scale as N1/d . For instance, in Fig. 14 we plot 〈sl〉/N and the
path-length distribution of the honeycomb two-dimensional
lattice as a function of (l − lav)N−1/2. The collapse of the
curves confirms the N1/d length-scale dependence.

As an example of a real-world network, we considered the
OpenPGP Web of Trust. Figure 15 shows the probability that
two arbitrary nodes can communicate with fidelity f > 2/3 as
a function of the singlet fraction F . Again, the comparison with
a Honeycomb lattice of the same size shows that the small-
world property of the complex networks allows for faithful
communication between most of the nodes in the network for
reasonable values of the noise, while in regular lattices this is
only possible for nearly pure states.

B. Average component size in limited-path percolation

We now proceed to derive the generating functions for
the limited-path-percolation problem. In this case, we are
interested in the distribution of sizes s of the components that
can be reached by only l steps through edges that are always
occupied. As in the nonlimited case, there are two different
distributions, P (l)

s and R(l)
s , for the cases where a random

vertex or a random edge is selected. The two corresponding
generating functions, h

(l)
P and h

(l)
R , read as

h
(l)
P (x) =

{
x for l = 0,

xgp

[
h

(l−1)
R (x)

]
for l � 1,

(31)

and

h
(l)
R (x) =

{
x for l = 0,

xgr

[
h

(l−1)
R (x)

]
for l � 1.

(32)

Note that all edges are occupied with probability 1. The
generalization to a different occupancy probability is straight-
forward, but not needed here.
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FIG. 16. (Color online) Normalized l-limited average component
size 〈sl〉/N as a function of l − lav for (a) the Erdős-Rényi network and
(b) the scale-free network. Points are simulation results for network
sizes N = 103, 104, 105, and 106 (squares, circles, diamonds, and
triangles, respectively). Solid lines correspond to Eq. (34); horizontal
dashed lines are the values of S2

1 .

As before, we are now ready to obtain the l-limited average
size,

〈sl〉 = dh
(l)
P (x)

dx

∣∣∣∣∣
x=1

= 1 + g′
p(1)h′(l−1)

R (1). (33)

By solving the recurrence equation given by h
′(l)
R (1) with the

boundary condition h
′(0)
R (1) = 1, we find

〈sl〉 =
{

1 for l = 0,

1 + g′
p(1) 1−(g′

r (1))l

1−g′
r (1) for l � 1.

(34)

This equals to the probability that any two nodes will be able
to communicate with fidelity above fmin. Figure 16 shows
this result for the Erdős-Rényi and the scale-free model, with
very good agreement between theoretical and numerical results
below lav.

As discussed above, this exponential growth of 〈sl〉 is valid
for l well below lav. Our numerical simulations show that the
validity of this approximation can be extended to values near
lav. Figure 13 shows that the path-length distribution is very
peaked around lav, and its width is independent of N . This
implies, on one hand that our analytical approach holds true
for values of l that fall out of this finite width (approaching
from below); see Fig. 16. In contrast, the finite width implies

that if l is a few steps beyond lav, then most of the nodes
in the components will be reached before the limit distance
is attained. In this situation, Eqs. (31) and (32) approach the
nonlimited case of (14) and (12) with φ1 = 1, and the size
of the giant component Sl tends to the nonlimited size S1.
Therefore, for networks with the small-world property, that is,
lav ∼ log N , one can interconnect with a threshold fidelity (say,
the classical benchmark f = 2/3) any arbitrary pair of nodes
in the network, provided that the singlet fraction of the edges
scales as F = 1 − O(1/ log N ) with the size of the network,
which is clearly less stringent than the analogous constrain for
d-dimensional networks F = 1 − O(N−1/d ).

We also consider the Watts-Strogatz model presented in
Sec. III, which has a base circular lattice of size N with
βN randomly added shortcuts. In this case the derivation of
the probability that a random vertex belongs to an l-limited
cluster of size s, P (l)

s , and its generating function h
(l)
P (x)

uses the formalism of “local clusters” introduced in [14].
These local clusters are clusters in the base lattice (without
considering the shortcuts). For a given l, the local cluster
is always of size 2l + 1. Thus, a shortcut at distance λ − 1
from the starting vertex leads to a (global) cluster of size s ′

with probability P
(l−λ)
s ′ . A random shortcut emerges from the

starting vertex with probability 1/N , from a vertex at distance
λ with probability 2/N , and lies outside the local cluster with
probability (N − 2l + 1)/N . Hence, that shortcut will lead to
a cluster of size s with a probability given by the generating
function:

f (x) = 1 − 1

N

[
2l − 1 − h

(l−1)
P (x) − 2

l∑
λ=2

h
(l−λ)
P (x)

]
.

There are 2βN shortcut end points that can similarly contribute
to the total size of the cluster. Recalling that the generating
function of the sum of sizes is the product of the generating
function of each size, we find

h
(l)
P (x) = xl+1f (x)2βN , (35)
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FIG. 17. (Color online) Normalized l-limited average component
size 〈sl〉/N as a function of l − lav for the Watts-Strogatz network.
Points are simulation results for network sizes N = 103, 104, 105,
and 106 (squares, circles, diamonds, and triangles, respectively); lines
correspond to the solution of Eq. (37).
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where x(l+1) is the generating function corresponding to the
starting “local” cluster. In the limit of large N this can be
simplified to

h
(l)
P (x) = x1+2le

−2β

[
2l−1−h

(l−1)
P (x)−2

∑l
λ=2 h

(l−λ)
P (x)

]
. (36)

Again, we can obtain the limited average size by taking the
first derivative at x = 1. For l = 0, 〈s0〉 = 1. For l � 1, this
results in the recurrence equation

〈sl〉 = 1 + 2l + 2β

[
〈sl−1〉 + 2

l−2∑
λ=0

〈sλ〉
]

= 〈sl−1〉 + 2 + 2β(〈sl−1〉 + 〈sl−2〉), (37)

which can be exactly solved. Figure 17 shows this result. We
want to stress the fact that from these generating functions,
(31) and (36), one can also calculate the probability P (l)

s up to
any s by solving s + 1 iterations of them and using Eq. (4).

VI. CONCLUSIONS

We have demonstrated that quantum complex networks
offer a powerful framework for entanglement distribution
in large systems. Regardless of their intricate structure,
complex networks can be studied by their statistical properties,
which allows us to analytically compute some interesting
properties and to deal with them without knowing their exact
structure. Here we have considered entanglement percolation
in networks where connections are built on pure, nonmaximal
bipartite entangled states and have studied a local quantum
preprocessing of the network that can significantly decrease
the percolation threshold and therefore allow quantum com-
munication for a lower level of entanglement. The quantum
preprocessing we have proposed is local in two senses. First,
quantum operations are always done on qubits that belong to
the same node. Second, the decision whether or not to perform
this operation depends on the local structure of the network
(the degree of the target node and the status of its neighbors)
and on information about general statistical properties of
the network. We have calculated the percolation threshold,
which marks the minimum level of entanglement needed to
entangle two distant nodes with finite probability. We have also
computed this probability, which amounts to the square of the
giant connected component in the network. These results are
analytical for networks with uncorrelated degree distribution
and can be compared to previous results in classical networks,
which shows that the preprocessing can substantially improve
communication over such networks by manipulating its local
structure. We have also studied numerically the Watts-Strogatz
small-world model and a real-world network, and have found
a similar behavior.

In this approach, the links between nodes are pure quantum
states. A more realistic scenario, however, needs to consider
noise in the connections. Here we have thus considered the
situation in which such connections are made of noisy mixed
states.

We have shown that in complex networks a direct imple-
mentation of the entanglement percolation strategy, without
quantum preprocessing, allows for faithful quantum commu-
nication (above a fixed fidelity threshold) between a large

number of nodes. The noise severely limits the number of
steps or connections through which information is transmitted.
However, in complex networks, one can reach a sizable amount
of nodes with a moderately low number of steps. If the fidelity
threshold allows for a path length slightly higher than the
average path length, all nodes in the giant component become
faithfully connected. The path-length distribution is peaked
at low values (scaling as log N in complex networks versus
N1/d in d-dimensional lattices) and has finite width (constant
in N versus N1/d ). This implies that in complex networks a
finite fraction of faithfully connected nodes appears for much
smaller limiting path lengths and reaches the giant component
size abruptly. Hence, here the advantage of complex networks
is twofold: the average path length which marks the transition
scales logarithmically with the network size, and the additional
steps needed to reach the nonlimited scenario is finite.

We have shown that new phenomena appear if networks
and the operations one can performed on them are governed
by the laws of quantum mechanics. This has been known for
regular lattices, but the rich properties of complex networks
still remain widely unexplored in the quantum setting. Our
results on percolation, together with new behavior found in the
emergence of subgraphs in quantum random networks [41], are
examples of these phenomena.

Our results also contribute to the field of classical complex
network. We have given analytical results for the gain in the
percolation thresholds and the size of the giant component
for uncorrelated complex networks that undergo a set of local
inversions (transformation that produce the complement of the
induced subgraph of the target node). The problem at hand of
studying how critical properties of a network can be drastically
modified by a given set of network transformations might be
of general interest to other disciplines in the field. Finally,
we have addressed the problem of limited-path percolation in
uncorrelated and small-world complex networks.
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APPENDIX: CALCULATION OF ηq

As we said, the probability ηq depends on the target degrees
{qi} and on how the network is traversed. By η(rand)

q we denote
the probability ηq when a q-swap is first done in a random
vertex with target degree, and then the cluster of vertices with
degree belonging to {qi} is traversed by a BFS, performing
q-swaps whenever possible (i.e., at every second step). After
that, another vertex with a target degree which has not yet
been explored is selected, and its cluster traversed, until all
target vertices have been checked. Such clusters consist of
vertices of degree k ∈ {qi} that are connected by at least one
path whose vertices also have a degree in {qi} and to which no
more vertices of degree k can be added. Figure 18 shows an
example of three of such clusters when the target degrees are 2
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FIG. 18. (Color online) Left: Example of a connected component
with three clusters (dark gray) of degrees 2 and 3. Right: Branching
process in η

(rand)
3 ; 3-swaps are made on dark-gray(red) nodes, which

are the t nodes at an even distance from the top one.

and 3. A random vertex of degree k ∈ {qi} belongs to a cluster
with t vertices at an even distance (including itself) and s at
an odd distance with probability ξ (s,t). In this cluster of size
s + t , t q-swaps are made. The probability η(rand)

q is then

η(rand)
q =

∑
t,s

t

s + t
ξ (s,t).

The function generating ξ (s,t) can be computed similar to
Eqs. (12) and (14). In this case, it is a function of two vari-
ables: hξ (x,y) = ∑

s,t�0 ξ (s,t)ysxt . Two more distributions
are needed: S(s,t) and T (s,t) are the probabilities of arriving
at a vertex of the given degree (or degrees) which is at an odd or
even distance from the starting vertex, respectively, and which
belongs to a cluster of s extra vertices at an odd distance and
t at an even distance. The corresponding generating functions
depend on each other:

hS(x,y) = 1 −
∑

q

�qrq + y
∑

q

�qrq[hT (x,y)]q−1, (A1)

hT (x,y) = 1 −
∑

q

�qrq + x
∑

q

�qrq[hS(x,y)]q−1, (A2)

and the function generating ξ (s,t) is

hξ (x,y) = x
∑

q

�q[hS(x,y)]q . (A3)

This allows computation of ξ (s,t) by taking partial derivatives
in x and y. As in the case of Eqs. (14) and (19), hξ (x,y) is in

general a transcendental function and has to be solved numer-
ically. However, in some cases it can be solved analytically.
In the case of 2-swap only (�2 = 1, �q �=2 = 0), Eq. (A3)
simplifies to the closed form

hξ (x,y) = x(1 − r1)2(1 + r1y)2(
1 − r2

1 xy
)2 . (A4)

The probability ξ (s,t) in Eq. (22) is then

ξ (s,t) = 1

s!t!

∂s∂thξ (x,y)

∂ys∂xt

∣∣∣∣
x,y=0

=
(

2

1 + s − t

)
(1 − r1)2rs+t−1

1 t (A5)

if |s − t | � 1 and 0 otherwise.
Alternatively, for the case of a single target degree, η(rand)

q

can also be computed exactly up to the nth order in rq−1 by the
branching process depicted in Fig. 18. The process begins at
step 0, with k0 = 1 vertices of degree q. At step 1, k1 vertices
out of qk0 = q are of degree q with binomial probability(

q

k1

)
r

k1
q−1(1 − rq−1)q−k1 .

At following steps i � 2 in the branching process, there are
(q − 1) new vertices for each previous vertex of degree q.
Thus, in every step, ki vertices are of degree q with probability(

(q − 1)ki−1

ki

)
r

ki

q−1(1 − rq−1)(q−1)ki−1−ki .

Operations are made on vertices at even steps. Note that every
new step in the branching process involves higher orders in
rq−1. Therefore, the expansion of ηq up to order n is obtained
by summing the contributions of the first n steps:

η(rand)
q =

∑
{ki }

∑�n/2�
i=0 k2i∑n
i=0 ki

(
q

k1

) n∏
i=2

(
(q − 1)ki−1

ki

)

× r
∑n

i=1 ki

q−1 (1 − rq−1)q+(q−2)(
∑n−1

i=1 ki )−kn , (A6)

where the sum in {ki} sums for k0 = 1, k1 = 0,1, . . . ,qk0, and
ki�2 = 0,1, . . . ,(q − 1)ki−1.
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